TEST PAPER OF JEE(MAIN) EXAMINATION - 2019
 (Held On Thursday 10 th JANUARY, 2019) TIME : 02 : 30 PM To 05 : 30 PM PHYSICS

1. Two forces P and Q of magnitude 2 F and 3 F , respectively, are at an angle θ with each other. If the force Q is doubled, then their resultant also gets doubled. Then, the angle is :
(1) 30°
(2) 60°
(3) 90°
(4) 120°

Ans. (4)
Sol. $4 F^{2}+9 F^{2}+12 F^{2} \cos \theta=R^{2}$
$4 \mathrm{~F}^{2}+36 \mathrm{~F}^{2}+24 \mathrm{~F}^{2} \cos \theta=4 \mathrm{R}^{2}$
$4 \mathrm{~F}^{2}+36 \mathrm{~F}^{2}+24 \mathrm{~F}^{2} \cos \theta$
$=4\left(13 \mathrm{~F}^{2}+12 \mathrm{~F}^{2} \cos \theta\right)=52 \mathrm{~F}^{2}+48 \mathrm{~F}^{2} \cos \theta$
$\cos \theta=-\frac{12 \mathrm{~F}^{2}}{24 \mathrm{~F}^{2}}=-\frac{1}{2}$
2. The actual value of resistance R, shown in the figure is 30Ω. This is measured in an experiment as shown using the standard formula $\mathrm{R}=\frac{\mathrm{V}}{\mathrm{I}}$, where V and I are the readings of the voltmeter and ammeter, respectively. If the measured value of R is 5% less, then the internal resistance of the voltmeter is :

(1) 350Ω
(2) 570Ω
(3)
(4) 600Ω

Ans. (2)
Sol. $0.95 \mathrm{R}=\frac{\mathrm{R} \mathrm{R}_{v}}{\mathrm{R}+\mathrm{R}_{v}}$
$0.95 \times 30=0.05 \mathrm{R}_{0}$
$\mathrm{R}_{\mathrm{v}}=19 \times 30=570 \Omega$
3. An unknown metal of mass 192 g heated to a temperature of $100^{\circ} \mathrm{C}$ was immersed into a brass calorimeter of mass 128 g containing 240 g of water a temperature of $8.4^{\circ} \mathrm{C}$ Calculate the specific heat of the unknown metal if water temperature stabilizes at $21.5^{\circ} \mathrm{C}$ (Specific heat of brass is $394 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$)
(1) $1232 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(2) $458 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(3) $654 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$
(4) $916 \mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}$

Ans. (4)
Sol. $192 \times \mathrm{S} \times(100-21.5)$
$=128 \times 394 \times(21.5-8.4)$
$+240 \times 4200 \times(21.5-8.4)$
$\Rightarrow S=916$
4. A particle starts from the origin at time $t=0$ and moves along the positive x -axis. The graph of velocity with respect to time is shown in figure. What is the position of the particle at time $\mathrm{t}=5 \mathrm{~s}$?

(1) 6 m
(2) 9 m
(3) 3 m
(4) 10 m

Ans. (2)
$S=$ Area under graph
$\frac{1}{2} \times 2 \times 2+2 \times 2+3 \times 1=9 \mathrm{~m}$
5. The self induced emf of a coil is 25 volts. When the current in it is changed at uniform rate from 10 A to 25 A in 1 s , the change in the energy of the inductance is :
(1) 437.5 J
(2) 637.5 J
(3) 740 J
(4) 540 J

Ans. (1)
$\mathrm{L} \frac{\mathrm{di}}{\mathrm{dt}}=25$
$\mathrm{L} \times \frac{15}{1}=25$
$L=\frac{5}{3} H$
$\Delta \mathrm{E}=\frac{1}{2} \times \frac{5}{3} \times\left(25^{2}-10^{2}\right)=\frac{5}{6} \times 525=437.5 \mathrm{~J}$
6. A current of 2 mA was passed through an unknown resistor which dissipated a power of 4.4 W. Dissipated power when an ideal power supply of 11 V is connected across it is :
(1) $11 \times 10^{-5} \mathrm{~W}$
(2) $11 \times 10^{-4} \mathrm{~W}$
(3) $11 \times 10^{5} \mathrm{~W}$
(4) $11 \times 10^{-3} \mathrm{~W}$

Ans. (1)
$\mathrm{P}=\mathrm{I}^{2} \mathrm{R}$
$4.4=4 \times 10^{-6} \mathrm{R}$
$\mathrm{R}=1.1 \times 10^{6} \Omega$
$\mathrm{P}^{\prime}=\frac{11^{2}}{\mathrm{R}}=\frac{11^{2}}{1.1} \times 10^{-6}=11 \times 10^{-5} \mathrm{~W}$
7. The diameter and height of a cylinder are measured by a meter scale to be $12.6 \pm 0.1 \mathrm{~cm}$ and $34.2 \pm 0.1 \mathrm{~cm}$, respectively. What will be the value of its volume in appropriate significant figures ?
(1) $4260 \pm 80 \mathrm{~cm}^{3}$
(2) $4300 \pm 80 \mathrm{~cm}^{3}$
(3) $4264.4 \pm 81.0 \mathrm{~cm}^{3}$
(4) $4264 \pm 81 \mathrm{~cm}^{3}$

Ans. (1)
$V=\pi \frac{d^{2}}{4} h=4260 \mathrm{~cm}^{3}$

$$
\frac{\Delta V}{V}=\frac{2 \Delta d}{d}+\frac{\Delta h}{h}
$$

$$
\begin{aligned}
& \begin{aligned}
\Delta V & =2 \times \frac{0.1 \mathrm{~V}}{12.6}+\frac{0.1 \mathrm{~V}}{34.2} \\
& =\frac{0.2}{12.6} \times 4260+\frac{0.1 \times 4260}{34.2}=80
\end{aligned} \\
& \text { Volume } \quad=4260 \pm 80 \mathrm{~cm}^{3}
\end{aligned}
$$

8. At some location on earth the horizontal component of earth's magnetic field $18 \times 10^{-6} \mathrm{~T}$. At this location, magnetic neeedle of length 0.12 m and pole strength 1.8 Am is suspended from its mid-point using a thread, it makes 45° angle with horizontal in equilibrium. To keep this needle horizontal, the vertical force that should be applied at one of its ends is :
(1) $3.6 \times 10^{-5} \mathrm{~N}$
(2) $6.5 \times 10^{-5} \mathrm{~N}$
(3) $1.3 \times 10^{-5} \mathrm{~N}$
(4) $1.8 \times 10^{-5} \mathrm{~N}$

Ans. (2)

$$
\begin{aligned}
& \mathrm{mBl} \sin 45^{0}=\mathrm{F} \frac{\ell}{2} \sin 45^{0} \\
& \mathrm{~F}=2 \mathrm{mB}=3.6 \times 18 \times 10^{-6} \\
& =6.5 \times 10^{-5} \mathrm{~N}
\end{aligned}
$$

9. The modulation frequency of an AM radio station is 250 kHz , which is 10% of the carrier wave. If another AM station approaches you for license what broadcast frequency will you allot ?
(1) 2750 kHz
(2) 2000 kHz
(3) 2250 kHz
(4) 2900 kHz

Ans. (2)
$\mathrm{f}_{\text {carrier }}=\frac{250}{0.1}=2500 \mathrm{KHZ}$
\therefore Range of signal $=2250 \mathrm{~Hz}$ to 2750 Hz
Now check all options : for 2000 KHZ
$\mathrm{f}_{\text {mod }}=200 \mathrm{~Hz}$
\therefore Range $=1800 \mathrm{KHZ}$ to 2200 KHZ
10. A hoop and a solid cylinder of same mass and radius are made of a permanent magnetic material with their magnetic moment parallel to their respective axes. But the magnetic moment of hoop is twice of solid cylinder. They are placed in a uniform magnetic field in such a manner that their magnetic moments make a small angle with the field. If the oscillation periods of hoop and cylinder are T_{h} and T_{c} respectively, then :
(1) $\mathrm{T}_{\mathrm{h}}=0.5 \mathrm{~T}_{\mathrm{c}}$
(2) $\mathrm{T}_{\mathrm{h}}=2 \mathrm{~T}_{\mathrm{c}}$
(3) $\mathrm{T}_{\mathrm{h}}=1.5 \mathrm{~T}_{\mathrm{c}}$
(4) $T_{h}=T_{c}$

Ans. (4)

$$
\begin{aligned}
& \mathrm{T}=2 \pi \sqrt{\frac{\mathrm{I}}{\mu \mathrm{~B}}} \\
& \mathrm{~T}_{\mathrm{h}}=2 \pi \sqrt{\frac{\mathrm{mR}^{2}}{(2 \mu) \mathrm{B}}} \\
& \mathrm{~T}_{\mathrm{C}}=2 \pi \sqrt{\frac{1 / 2 \mathrm{mR}^{2}}{\mu \mathrm{~B}}}
\end{aligned}
$$

11. The electric field of a plane polarized electromagnetic wave in free space at time $\mathrm{t}=0$ is given by an expression
$\vec{E}(x, y)=10 \hat{j} \cos [(6 x+8 z)]$
The magnetic field $\vec{B}(x, z, t)$ is given by: (c is the velocity of light)
(1) $\frac{1}{\mathrm{c}}(6 \hat{\mathrm{k}}+8 \hat{\mathrm{i}}) \cos [(6 \mathrm{x}-8 \mathrm{z}+10 \mathrm{ct})]$
(2) $\frac{1}{\mathrm{c}}(6 \hat{\mathrm{k}}-8 \hat{\mathrm{i}}) \cos [(6 \mathrm{x}+8 \mathrm{z}-10 \mathrm{ct})]$
(3) $\frac{1}{\mathrm{c}}(6 \hat{\mathrm{k}}+8 \hat{\mathrm{i}}) \cos [(6 \mathrm{x}+8 \mathrm{z}-10 \mathrm{ct})]$
(4) $\frac{1}{\mathrm{c}}(6 \hat{\mathrm{k}}-8 \hat{\mathrm{i}}) \cos [(6 \mathrm{x}+8 \mathrm{z}+10 \mathrm{ct})]$

Ans. (2)

$$
\overrightarrow{\mathrm{E}}=10 \hat{\mathrm{j}} \cos [(6 \hat{\mathrm{i}}+8 \hat{\mathrm{k}}) \cdot(x \hat{\mathrm{i}}+z \hat{\mathrm{k}})]
$$

$=10 \hat{j} \cos [\overrightarrow{\mathrm{~K}} \cdot \overrightarrow{\mathrm{r}}]$
$\therefore \overrightarrow{\mathrm{K}}=6 \hat{\mathrm{i}}+8 \hat{\mathrm{k}}$; direction of waves travel.
i.e. direction of ' c '.

\therefore Direction of $\hat{\mathrm{B}}$ will be along

$$
\hat{\mathrm{C}} \times \hat{\mathrm{E}}=\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}}{5}
$$

Mag. of \vec{B} will be along $\hat{C} \times \hat{E}=\frac{-4 \hat{i}+3 \hat{k}}{5}$
Mag. of $\vec{B}=\frac{E}{C}=\frac{10}{C}$
$\therefore \vec{B}=\frac{10}{C}\left(\frac{-4 \hat{\mathrm{i}}+3 \hat{\mathrm{k}}}{5}\right)=\frac{(-8 \hat{\mathrm{i}}+6 \hat{\mathrm{k}})}{\mathrm{C}}$
12. Condiser the nuclear fission
$\mathrm{Ne}^{20} \rightarrow 2 \mathrm{He}^{4}+\mathrm{C}^{12}$
Given that the binding energy/nucleon of Ne^{20},
He^{4} and C^{12} are, respectively, $8.03 \mathrm{MeV}, 7.07$
MeV and 7.86 MeV , identify the correct statement :
(1) 8.3 MeV energy will be released
(2) energy of 12.4 MeV will be supplied
(3) energy of 11.9 MeV has to be supplied
(4) energy of 3.6 MeV will be released

Ans. (3)
$\mathrm{Ne}^{20} \rightarrow 2 \mathrm{He}^{4}+\mathrm{C}^{12}$
$8.03 \times 20 \quad 2 \times 7.07 \times 4+7.86 \times 12$
$\therefore \mathrm{E}_{\mathrm{B}}=(\mathrm{BE})_{\text {react }}-(\mathrm{BE})_{\text {product }}=9.72 \mathrm{MeV}$
13. Two vectors \vec{A} and \vec{B} have equal magnitudes. The magnitude of $(\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}})$ is ' n ' times the magnitude of $(\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}})$. The angle between $\overrightarrow{\mathrm{A}}$ and \vec{B} is :
(1) $\sin ^{-1}\left[\frac{\mathrm{n}^{2}-1}{\mathrm{n}^{2}+1}\right]$
(2) $\cos ^{-1}\left[\frac{\mathrm{n}-1}{\mathrm{n}+1}\right]$
(3) $\cos ^{-1}\left[\frac{n^{2}-1}{n^{2}+1}\right]$
(4) $\sin ^{-1}\left[\frac{n-1}{n+1}\right]$

Ans. (3)
$|\overrightarrow{\mathrm{A}}+\overrightarrow{\mathrm{B}}|=2 \mathrm{a} \cos \theta / 2$
$|\overrightarrow{\mathrm{A}}-\overrightarrow{\mathrm{B}}|=2 \mathrm{a} \cos \frac{(\pi-\theta)}{2}=2 \mathrm{a} \sin \theta / 2$ \qquad
$\Rightarrow n\left(2 a \sin \frac{\theta}{2}\right)=2 a \frac{\cos \theta}{2}$

$$
\cos \theta=\frac{1-\tan ^{2}(\theta / 2)}{1+\tan ^{2}(\theta / 2)}
$$

14. A particle executes simple harmonic motion with an amplitude of 5 cm . When the particle is at 4 cm from the mean position, the magnitude of its velocity in SI units is equal to that of its acceleration. Then, its periodic time in seconds is :
(1) $\frac{7}{3} \pi$
(2) $\frac{3}{8} \pi$
(3) $\frac{4 \pi}{3}$
(4) $\frac{8 \pi}{3}$

Ans. (4)
$v=\omega \sqrt{A^{2}-x^{2}}$
$\mathrm{a}=-\omega^{2} \mathrm{x}$
$|\mathrm{v}|=|\mathrm{a}|$
$\omega \sqrt{A^{2}-x^{2}}=\omega^{2} x$

$$
\mathrm{A}^{2}-\mathrm{x}^{2}=\omega^{2} \mathrm{x}^{2}
$$

$$
5^{2}-4^{2}=\omega^{2}\left(4^{2}\right)
$$

$\Rightarrow 3=\omega \times 4$
$\mathrm{T}=2 \pi / \omega$
15. Consider a Young's double slit experiment as shown in figure. What should be the slit separation d in terms of wavelength λ such that the first minima occurs directly in front of the slit $\left(\mathrm{S}_{1}\right)$?

(1) $\frac{\lambda}{2(5-\sqrt{2})}$
(2) $\frac{\lambda}{(5-\sqrt{2})}$
(3) $\frac{\lambda}{(\sqrt{5}-2)}$
(4) $\frac{\lambda}{2(\sqrt{5}-2)}$

Ans. (4)

$$
\sqrt{5} \mathrm{~d}-2 \mathrm{~d}=\frac{\lambda}{2}
$$

16. The eye can be regarded as a single refracting surface. The radius of curvature of this surface is equal to that of cornea $(7.8 \mathrm{~mm})$. This surface separates two media of refractive indices 1 and 1.34. Calculate the distance from the refracting surface at which a parallel beam of light will come to focus.
(1) 2 cm
(2) 1 cm
(3) 3.1 cm
((4) 4.0 cm
Ans. (3)

$\frac{1.34}{\mathrm{~V}}-\frac{1}{\infty}=\frac{1.34-1}{7.8}$
$\therefore \mathrm{V}=30.7 \mathrm{~mm}$
17. Half mole of an ideal monoatomic gas is heated at constant pressure of 1 atm from $20^{\circ} \mathrm{C}$ to $90^{\circ} \mathrm{C}$. Work done by gas is close to : (Gas constant $\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mol} . \mathrm{K})$
(1) 73 J
(2) 291 J
(3) 581 J
(4) 146 J

Ans. (2)
$\mathrm{WD}=\mathrm{P} \Delta \mathrm{V}=\mathrm{nR} \Delta \mathrm{T}=\frac{1}{2} \times 8.31 \times 70$
18. A metal plate of area $1 \times 10^{-4} \mathrm{~m}^{2}$ is illuminated by a radiation of intensity $16 \mathrm{~mW} / \mathrm{m}^{2}$. The work function of the metal is 5 eV . The energy of the incident photons is 10 eV and only 10% of it produces photo electrons. The number of emitted photo electrons per second and their maximum energy, respectively, will be :
$\left[1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}\right]$
(1) 10^{10} and 5 eV
(2) 10^{14} and 10 eV
(3) 10^{12} and 5 eV
(4) 10^{11} and 5 eV

Ans. (4)
Maximum kinetic energy $\mathrm{KE}_{\max }=\mathrm{E}-\phi$

$$
\mathrm{KE}_{\max }=10 \mathrm{eV}-5 \mathrm{eV}=5 \mathrm{eV}
$$

No. of photons incident per unit time $\frac{n}{t}=\frac{I A}{E}$

$$
\frac{\mathrm{n}}{\mathrm{t}}=\frac{16 \times 10^{-3} \times 10^{-4}}{10 \times 1.6 \times 10^{-19}}=10^{12}
$$

No. of photoelectrons ejected per unit time $\frac{\mathrm{n}}{\mathrm{t}}=\frac{10}{100} \times 10^{12}=10^{11}$
19. Charges $-q$ and $+q$ located at A and B, respectively, constitute an electric dipole. Distance $A B=2 \mathrm{a}, \mathrm{O}$ is the mid point of the dipole and OP is perpendicular to AB . A charge Q is placed at P where $O P=y$ and $y \gg 2 a$. The charge Q experiences and electrostatic force F. If Q is now moved along the equatorial line to P^{\prime} such that $\mathrm{OP}^{\prime}=\left(\frac{\mathrm{y}}{3}\right)$, the force on Q will be close to : $\left(\frac{y}{3} \gg 2 a\right)$

(1) $\frac{F}{3}$
(2) 3 F
(3) 9 F
(4) 27 F

Ans. (4)
Sol. Electric field of equitorial plane of dipole $=-\frac{K \vec{P}}{r^{3}}$
\therefore At $P, F=-\frac{K \vec{P}}{r^{3}} Q$.
At $\mathrm{P}^{1}, \mathrm{~F}^{1}=-\frac{\mathrm{K} \overrightarrow{\mathrm{P} Q}}{(\mathrm{r} / 3)^{3}}=27 \mathrm{~F}$.
20. Two stars of masses $3 \times 10^{31} \mathrm{~kg}$ each, and at distance $2 \times 10^{11} \mathrm{~m}$ rotate in a plane about their common centre of mass O. A meteorite passes through O moving perpendicular to the star's rotation plane. In order to escape from the gravitational field of this double star, the minimum speed that meteorite should have at O is : (Take Gravitational constant $\mathrm{G}=6.67 \times 10^{-11} \mathrm{Nm}^{2} \mathrm{~kg}^{-2}$)
(1) $1.4 \times 10^{5} \mathrm{~m} / \mathrm{s}$
(2) $24 \times 10^{4} \mathrm{~m} / \mathrm{s}$
(3) $3.8 \times 10^{4} \mathrm{~m} / \mathrm{s}$
(4) $2.8 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Ans. (4)
By energy convervation between $0 \& \infty$
$-\frac{\mathrm{GMm}}{\mathrm{r}}+\frac{-\mathrm{GMm}}{\mathrm{r}}+\frac{1}{2} \mathrm{mV}^{2}=0+0$
[M is mass of star m is mass of meteroite)
$\Rightarrow \mathrm{v}=\sqrt{\frac{4 \mathrm{GM}}{\mathrm{r}}}=2.8 \times 10^{5} \mathrm{~m} / \mathrm{s}$
21. A closed organ pipe has a fundamental frequency of 1.5 kHz . The number of overtones that can be distinctly heard by a person with this organ pipe will be : (Assume that the highest frequency a person can hear is $20,000 \mathrm{~Hz}$)
(1) 7
(2) 5
(3) 6
(4) 4

Ans. (3)
Sol. For closed organ pipe, resonate frequency is odd multiple of fundamental frequency.
$\therefore(2 \mathrm{n}+1) \mathrm{f}_{0} \leq 20,000$
$\left(\mathrm{f}_{\mathrm{o}}\right.$ is fundamental frequency $\left.=1.5 \mathrm{KHz}\right)$
$\therefore \mathrm{n}=6$
22. A rigid massless rod of length $3 l$ has two masses attached at each end as shown in the figure. The rod is pivoted at point P on the horizontal axis (see figure). When released from initial horizontal position, its instantaneous angular acceleration will be :

(1) $\frac{\mathrm{g}}{2 l}$
(2) $\frac{7 g}{3 l}$
(3) $\frac{\mathrm{g}}{13 l}$
(4) $\frac{\mathrm{g}}{3 l}$

Ans. (3)

Applying torque equation about point P .
$2 \mathrm{M}_{0}(2 \mathrm{l})-5 \mathrm{M}_{0} \mathrm{gl}=\mathrm{I} \alpha$
$\mathrm{I}=2 \mathrm{M}_{0}(2 \mathrm{l})^{2}+5 \mathrm{M}_{0} \mathrm{l}^{2}=13 \mathrm{M}_{0} \mathrm{l}^{2} \mathrm{~d}$
$\therefore \alpha=-\frac{M_{0} g \ell}{13 M_{0} \ell^{2}} \Rightarrow \alpha=-\frac{g}{13 \ell}$
$\therefore \alpha=\frac{\mathrm{g}}{13 \ell}$ anticlockwise
23. For the circuit shown below, the current through the Zener diode is :

(1) 5 mA
(2) Zero
(3) 14 mA
(4) 9 mA

Ans. (4)
Assuming zener diode doesnot undergo breakdown, current in circuit $=\frac{120}{15000}=8 \mathrm{~mA}$
\therefore Voltage drop across diode $=80 \mathrm{~V}>50 \mathrm{~V}$.
The diode undergo breakdown.

Current in $\mathrm{R}_{1}=\frac{70}{5000}=14 \mathrm{~mA}$
Current in $\mathrm{R}_{2}=\frac{50}{10000}=5 \mathrm{~mA}$
\therefore Current through diode $=9 \mathrm{~mA}$
24. Four equal point charges Q each are placed in the xy plane at $(0,2),(4,2),(4,-2)$ and $(0,-2)$. The work required to put a fifth charge Q at the origin of the coordinate system will be :
(1) $\frac{\mathrm{Q}^{2}}{2 \sqrt{2} \pi \varepsilon_{0}}$
(2) $\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0}}\left(1+\frac{1}{\sqrt{5}}\right)$
(3) $\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0}}\left(1+\frac{1}{\sqrt{3}}\right)$
(4) $\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0}}$

Ans. (2)

Potential at origin $=\frac{K Q}{2}+\frac{K Q}{2}+\frac{K Q}{\sqrt{20}}+\frac{K Q}{\sqrt{20}}$
(Potential at $\infty=0$)
$=\operatorname{KQ}\left(1+\frac{1}{\sqrt{5}}\right)$
\therefore Work required to put a fifth charge Q at origin is equal to $\frac{\mathrm{Q}^{2}}{4 \pi \varepsilon_{0}}\left(1+\frac{1}{\sqrt{5}}\right)$
25. A cylindrical plastic bottle of negligible mass is filled with 310 ml of water and left floating in a pond with still water. If pressed downward slightly and released, it starts performing simple harmonic motion at angular frequency ω. If the radius of the bottle is 2.5 cm then ω close to : (density of water $=10^{3} \mathrm{~kg} / \mathrm{m}^{3}$)
(1) 5.00 rad s
(2) $1.25 \mathrm{rad} \mathrm{s}^{-1}$
(3) $3.75 \mathrm{rad} \mathrm{s}^{-1}$
(4) $2.50 \mathrm{rad} \mathrm{s}^{-1}$

Ans. (Bonus)

at equilibrium
$\mathrm{B}_{0}=\mathrm{mg}$

Extra Boyant force $=\delta A x g$
$B_{0}+B \times m g=m a$
$B=m a$
$\mathrm{a}=\left(\frac{\delta \mathrm{Ag}}{\mathrm{m}}\right)^{\mathrm{x}}$
$\mathrm{w}^{2}=\frac{\delta \mathrm{Ag}}{\mathrm{m}}$
$\mathrm{w}=\sqrt{\frac{10^{3} \times \pi(2.5)^{2} \times 10^{-4} \times 10}{310 \times 10^{-6} \times 10^{3}}}$
$=\sqrt{63.30}=7.95$
26. A parallel plate capacitor having capacitance 12 pF is charged by a battery to a potential difference of 10 V between its plates. The charging battery is now disconnected and a porcelain slab of dielectric constant 6.5 is slipped between the plates the work done by the capacitor on the slab is :
(1) 692 pJ
(2) 60 pJ
(3) 508 pJ
(4) 560 pJ

Ans. (3)

$$
\begin{aligned}
& \mathrm{W}=-\left(\mathrm{U}_{\mathrm{f}}-\mathrm{U}_{\mathrm{i}}\right) \\
& =-\left(\frac{(\varepsilon \mathrm{C})^{2}}{2 \mathrm{KC}}-\frac{(\varepsilon \mathrm{C})^{2}}{2 \mathrm{C}}\right) \\
& =\frac{\varepsilon^{2} \mathrm{C}}{2}\left(\frac{\mathrm{~K}-1}{\mathrm{~K}}\right) \\
& =\frac{10^{2} \times 12 \times 10^{-12}}{2}\left(\frac{5.5}{6.5}\right)=508 \mathrm{pJ}
\end{aligned}
$$

27. Two kg of a monoatomic gas is at a pressure of $4 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}$. The density of the gas is $8 \mathrm{~kg} / \mathrm{m}^{3}$. What is the order of energy of the gas due to its thermal motion?
(1) $10^{3} \mathrm{~J}$
(2) $10^{5} \mathrm{~J}$
(3) $10^{6} \mathrm{~J}$
(4) $10^{4} \mathrm{~J}$

Ans. (4)
Thermal energy of N molecule

$$
=\mathrm{N}\left(\frac{3}{2} \mathrm{kT}\right)
$$

$$
\begin{aligned}
& =\frac{\mathrm{N}}{\mathrm{~N}_{\mathrm{A}}} \frac{3}{2} \mathrm{RT} \\
& =\frac{3}{2}(\mathrm{nRT}) \\
& =\frac{3}{2} \mathrm{PV} \\
& =\frac{3}{2} \mathrm{P}\left(\frac{\mathrm{~m}}{8}\right) \\
& =\frac{3}{2} \times 4 \times 10^{4} \times \frac{2}{8} \\
& =1.5 \times 10^{4}
\end{aligned}
$$

order will 10^{4}
28. A particle which is experiencing a force, given by $\vec{F}=3 \vec{i}-12 \vec{j}$, undergoes a displacement of $\overrightarrow{\mathrm{d}}=4 \overrightarrow{\mathrm{i}}$. If the particle had a kinetic energy of 3 J at the beginning of the displacement, what is its kinetic energy at the end of the displacement?
(1) 15 J
(2) 10 J
(3) 12 J
(4) 9 J

Ans. (1)

$$
\begin{aligned}
\text { Work done } & =\overrightarrow{\mathrm{F}} \cdot \overrightarrow{\mathrm{~d}} \\
& =12 \mathrm{~J}
\end{aligned}
$$

work energy theorem
$\mathrm{w}_{\text {net }}=\Delta$ K.E.
$12=\mathrm{K}_{\mathrm{f}}-3$
$\mathrm{K}_{\mathrm{f}}=15 \mathrm{~J}$
29. The Wheatstone bridge shown in Fig. here, gets balanced when the carbon resistor used as R_{1} has the colour code (Orange, Red, Brown). The resistors R_{2} and R_{4} are 80Ω and 40Ω, respectively.
Assuming that the colour code for the carbon resistors gives their accurate values, the colour code for the carbon resistor, used as R_{3}, would be :

(1) Red, Green, Brown
(2) Brown, Blue, Brown
(3) Grey, Black, Brown
(4) Brown, Blue, Black

Ans. (2)
$\mathrm{R}_{1}=32 \times 10=320$
for wheat stone bridge
$\Rightarrow \frac{\mathrm{R}_{1}}{\mathrm{R}_{3}}=\frac{\mathrm{R}_{2}}{\mathrm{R}_{4}}$

$$
\frac{320}{\mathrm{R}_{3}}=\frac{80}{40}
$$

Brown

30. Two identical spherical balls of mass M and radius R each are stuck on two ends of a rod of length 2 R and mass M (see figure). The moment of inertia of the system about the axis passing perpendicularly through the centre of the rod is .

(1) $\frac{152}{15} \mathrm{MR}^{2}$
(2) $\frac{17}{15} \mathrm{MR}^{2}$
(3) $\frac{137}{15} \mathrm{MR}^{2}$
(4) $\frac{209}{15} \mathrm{MR}^{2}$

Ans. (3)
For Ball
using parallel axis theorem.

$$
\begin{aligned}
\mathrm{I}_{\text {ball }} & =\frac{2}{5} \mathrm{MR}^{2}+\mathrm{M}(2 \mathrm{R})^{2} \\
& =\frac{22}{5} \mathrm{MR}^{2}
\end{aligned}
$$

2 Balls so $\frac{44}{5} \mathrm{MR}^{2}$
Irod $=$ for $\operatorname{rod} \frac{M(2 R)^{2}}{R}=\frac{M R^{2}}{3}$
$I_{\text {system }}=I_{\text {Ball }}+I_{\text {rod }}$
$=\frac{44}{5} \mathrm{MR}^{2}+\frac{\mathrm{MR}^{2}}{3}$
$=\frac{137}{15} \mathrm{MR}^{2}$

TEST PAPER OF JEE(MAIN) EXAMINATION - 2019 (Held On Thrusday 10th JANUARY, 2019) TIME : 02:30 PM To 05:30 PM CHEMISTRY

1. An ideal gas undergoes isothermal compression from $5 \mathrm{~m}^{3}$ against a constant external pressure of $4 \mathrm{Nm}^{-2}$. Heat released in this process is used to increase the temperature of 1 mole of Al. If molar heat capacity of Al is $24 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$, the temperature of Al increases by :
(1) $\frac{3}{2} \mathrm{~K}$
(2) $\frac{2}{3} \mathrm{~K}$
(3) 1 K
(4) 2 K

Ans. (2)
Sol. Work done on isothermal irreversible for ideal gas
$=-\mathrm{P}_{\mathrm{ext}}\left(\mathrm{V}_{2}-\mathrm{V}_{1}\right)$
$=-4 \mathrm{~N} / \mathrm{m}^{2}\left(1 \mathrm{~m}^{3}-5 \mathrm{~m}^{3}\right)$
$=16 \mathrm{Nm}$
Isothermal process for ideal gas
$\Delta \mathrm{U}=0$
$\mathrm{q}=-\mathrm{w}$
$=-16 \mathrm{Nm}$
$=-16 \mathrm{~J}$
Heat used to increase temperature of $\mathrm{A} \ell$
$\mathrm{q}=\mathrm{n} \mathrm{C}_{\mathrm{m}} \Delta \mathrm{T}$
$16 \mathrm{~J}=1 \times 24 \frac{\mathrm{~J}}{\mathrm{~mol} . \mathrm{K}} \times \Delta \mathrm{T}$
$\Delta \mathrm{T}=\frac{2}{3} \mathrm{~K}$
2. The $71^{\text {st }}$ electron of an element X with an atomic number of 71 enters into the orbital :
(1) 4 f
(2) $6 p$
(3) 6 s
(4) 5 d

Ans. (1)
3. The number of 2-centre-2-electron and 3-centre-2-electron bonds in $\mathrm{B}_{2} \mathrm{H}_{6}$, respectively, are :
(1) 2 and 4
(2) 2 and 1
(3) 2 and 2
(4) 4 and 2

Ans. (4)
4. The amount of sugar $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)$ required to prepare 2 L of its 0.1 M aqueous solution is :
(1) 68.4 g
(2) 17.1 g
(3) 34.2 g
(4) 136.8 g

Ans. (1)
Sol. Molarity $=\frac{(\mathrm{n})_{\text {solute }}}{\mathrm{V}_{\text {solution }}(\text { in lit })}$
$0.1=\frac{\mathrm{wt} . / 342}{2}$
wt $\left(\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}\right)=68.4$ gram
5. Among the following reactions of hydrogen with halogens, the one that requires a catalyst is :
(1) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightarrow 2 \mathrm{HI}$
(2) $\mathrm{H}_{2}+\mathrm{F}_{2} \rightarrow 2 \mathrm{HF}$
(3) $\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCI}$
(4) $\mathrm{H}_{2}+\mathrm{Br}_{2} \rightarrow 2 \mathrm{HBr}$

Ans. (1)
6. Sodium metal on dissolution in liquid ammonia gives a deep blue solution due to the formation of:
(1) sodium ion-ammonia complex
(2) sodamide
(3) sodium-ammonia complex
(4) ammoniated electrons

Ans. (4)
7. What will be the major product in the following mononitration reaction?

(1)

(2)

(3)

(4)

Ans. (3)

Sol. amine is o-p directing
8. In the cell $\operatorname{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}(\mathrm{~g}, 1 \operatorname{bar}|\mathrm{HCl}(\mathrm{aq})| \operatorname{Ag}(\mathrm{s}) \mid \operatorname{Pt}(\mathrm{s})$ the cell potential is 0.92 when a 10^{-6} molal HCl solution is used. THe standard electrode potential of $\left(\mathrm{AgCl} / \mathrm{Ag}, \mathrm{Cl}^{-}\right)$electrode is :
$\left\{\right.$ given, $\left.\frac{2.303 \mathrm{RT}}{\mathrm{F}}=0.06 \mathrm{Vat} 298 \mathrm{~K}\right\}$
(1) 0.20 V
(2) 0.76 V
(3) 0.40 V
(4) 0.94 V

Ans. (1)
$\operatorname{Pt}(\mathrm{s}) \mid \mathrm{H}_{2}(\mathrm{~g}, 1$ bar $)|\mathrm{HCl}(\mathrm{aq})| \operatorname{AgCl}(\mathrm{s})|\operatorname{Ag}(\mathrm{s})| \operatorname{Pt}(\mathrm{s})$
Sol.

$$
10^{-6} \mathrm{~m}
$$

Anode: $\quad \mathrm{H}_{2} \longrightarrow 2 \mathrm{H}^{+}+2 \mathrm{e} \times 1$
Cathode : $\mathrm{e}^{-}+\mathrm{AgCl}(\mathrm{s}) \longrightarrow \mathrm{Ag}(\mathrm{s})+\mathrm{Cl}^{-}(\mathrm{aq})$ $\times 2$

$$
\begin{aligned}
& 2 \mathrm{Ag}(\mathrm{~s})+\begin{array}{c}
\mathrm{H}_{2}(\mathrm{~g}) 1+\mathrm{AgCl}(\mathrm{~s}) \longrightarrow 2 \mathrm{Cl}^{+}(\mathrm{aq})
\end{array} \\
& \mathrm{E}_{\text {cell }}=\mathrm{E}_{\mathrm{cell}}^{0}-\frac{0.06}{2} \log _{10}\left(\left(\mathrm{H}^{+}\right)^{2} \cdot\left(\mathrm{Cl}^{-}\right)^{2}\right) \\
& .925=\left(\mathrm{E}_{\mathrm{H}_{2} / \mathrm{H}^{+}}^{0}+\mathrm{E}_{\mathrm{AgCl} / \mathrm{Ag}, \mathrm{Cl}^{-}}^{0}\right)-\frac{0.06}{2} \log _{10} \\
& \left(\left(10^{-6}\right)^{2}\left(10^{-6}\right)^{2}\right) \\
& .92=0+\mathrm{E}_{\mathrm{AgCl}^{0} / \mathrm{Ag}, \mathrm{Cl}^{-}}^{0}-0.03 \log _{10}\left(10^{-6}\right)^{4} \\
& \mathrm{E}_{\mathrm{AgCl}}^{0} / \mathrm{Ag}, \mathrm{Cl}^{-}=.92+.03 \times-24=0.2 \mathrm{~V}
\end{aligned}
$$

9. The major product of the following recation is:

(1)

(2)

(3)

(4)

Ans. (3)
10. The pair that contains two $\mathrm{P}-\mathrm{H}$ bonds in each of the oxoacids is :
(1) $\mathrm{H}_{3} \mathrm{PO}_{2}$ nad $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$
(2) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ and $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(3) $\mathrm{H}_{3} \mathrm{PO}_{3}$ and $\mathrm{H}_{3} \mathrm{PO}_{2}$
(4) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{5}$ nad $\mathrm{H}_{3} \mathrm{PO}_{3}$

Ans. (1)
11. The major product of the following reaction is:

(1)

(2)

(4)

Ans. (4)
Sol. $\mathrm{S}_{\mathrm{N}}{ }^{2}$ reaction
12. The difference in the number of unpaired electrons of a metal ion in its high-spin and low-spin octahedral complexes is two. The metal ion is :
(1) Fe^{2+}
(2) Co^{2+}
(3) Mn^{2+}
(4) Ni^{2+}

Ans. (2)
Sol. $\mathrm{Co}^{2+}-->\mathrm{d}^{7}$
hs, $n=3,1 \mathrm{~s}, \mathrm{n}=1$
13. A compound of formula $A_{2} B_{3}$ has the hep lattice. Which atom forms the hcp lattice and what fraction of tetrahedral voids is occupied by the other atoms :
(1) hcp lattice-A, $\frac{2}{3}$ Tetrachedral voids-B
(2) hcp lattice-B, $\frac{1}{3}$ Tetrachedral voids-A
(3) hcp lattice-B, $\frac{2}{3}$ Tetrachedral voids-A
(4) hcp lattice-A $\frac{1}{3}$ Tetrachedral voids-B

Ans. (2)

Sol. $\mathrm{A}_{2} \mathrm{~B}_{3}$ has HCP lattice

If A form $H C P$, then $\frac{3}{4}^{\text {th }}$ of THV must occupied by B to form $A_{2} B_{3}$

If B form HCP, then $\frac{1}{3}^{\text {th }}$ of THV must occupied by A to form $\mathrm{A}_{2} \mathrm{~B}_{3}$
14. The reaction that is NOT involved in the ozone layer depletion mechanism in the stratosphere is:
(1)

$$
\mathrm{HOCl}(\mathrm{~g}) \xrightarrow{\mathrm{hu}} \dot{\mathrm{O}} \mathrm{H}(\mathrm{~g})+\dot{\mathrm{C}} \mathrm{l}(\mathrm{~g})
$$

(2)

(3) $\mathrm{CH}_{4}+2 \mathrm{O}_{3} \rightarrow 3 \mathrm{CH}_{2}=\mathrm{O}+3 \mathrm{H}_{2} \mathrm{OP}$
(4) $\dot{\mathrm{Cl}} \dot{\mathrm{O}}(\mathrm{g})+\mathrm{O}(\mathrm{g}) \rightarrow \dot{\mathrm{C}}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$

Ans. (3)

Sol. Conceptual
15. The process with negative entropy change is:
(1) Dissolution of iodine in water
(2) Synthesis of ammonia from N_{2} and H_{2}
(3) Dissolution of $\mathrm{CaSO}_{4}(\mathrm{~s})$ to CaO (s) and $\mathrm{SO}_{3}(\mathrm{~g})$
(4) Subimation of dry ice

Ans. (2)

Sol. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) ; \Delta \mathrm{n}_{\mathrm{g}}<0$
16. The major product of the following reaction is:

(1)

(2)

(3)

(4)

Ans. (3)
17. A reaction of cobalt(III) chloride and ethylenediamine in a $1: 2$ mole ratio generates two isomeric products A (violet coloured) B (green coloured). A can show optical activity, B is optically inactive. What type of isomers does A and B represent ?
(1) Geometrical isomers
(2) Ionisation isomers]
(3) Coordination isomers
(4) Linkage isomers

Ans. (1)

Sol. $\left[\mathrm{Co}(\mathrm{Cn})_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$
cis --> Optically active
trans --> Optically in active
18. The major product obtained in the following reaction is :

(1)

(2)

(3)

(4)

Ans. (4)
19. Which of the following tests cannot be used for identifying amino acids ?
(1) Biuret test
(2) Xanthoproteic test
(3) Barfoed test
(4) Ninhydrin test

Ans. (3)
20. What is the IUPAC name of the following compound?

(1) 3-Bromo-1, 2-dimethylbut-1-ene]
(2) 4-Bromo-3-methylpent-2-ene
(3) 2-Bromo-3-methylpent-3-ene
(4) 3-Bromo-3-methyl-1, 2-dimethylprop-1-ene

Ans. (2)
21. Which is the most suitable reagent for the following transformation ?

$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(1) alkaline KMnO_{4}
(2) $\mathrm{I}_{2} / \mathrm{NaOH}$
(3) Tollen's reagent
(4) $\mathrm{CrO}_{2} / \mathrm{CS}_{2}$

Ans. (2)
22. The correct match between item 'I' and item 'II' is :

Item 'I' (compound)
(A) Lysine
(B) Furfural
(C) Benzyl alcohol
(D) Styrene

Item 'II' (reagent)
(P) 1-naphthol
(Q) ninhydrin
(R) KMnO_{4}
(S) Ceric ammonium nitrate
(1) $(\mathrm{A}) \rightarrow(\mathrm{Q}),(\mathrm{B}) \rightarrow(\mathrm{P}),(\mathrm{C}) \rightarrow(\mathrm{S}),(\mathrm{D}) \rightarrow(\mathrm{R})$
(2) $(\mathrm{A}) \rightarrow(\mathrm{Q}),(\mathrm{B}) \rightarrow(\mathrm{R}),(\mathrm{C}) \rightarrow(\mathrm{S}),(\mathrm{D}) \rightarrow(\mathrm{P})$
(3) $(\mathrm{A}) \rightarrow(\mathrm{Q}),(\mathrm{B}) \rightarrow(\mathrm{P}),(\mathrm{C}) \rightarrow(\mathrm{R}),(\mathrm{D}) \rightarrow(\mathrm{S})$
(4) $(\mathrm{A}) \rightarrow(\mathrm{R}),(\mathrm{B}) \rightarrow(\mathrm{P}),(\mathrm{C}) \rightarrow(\mathrm{Q}),(\mathrm{D}) \rightarrow(\mathrm{S})$

Ans. (1)
23. In the reaction of oxalate with permaganate in acidic medium, the number of electrons involved in producing one molecule of CO_{2} is :
(1) 10
(3) 1
(4) 5

Ans. (3)

Sol.

$10 \mathrm{e}^{\text {- }}$ trans for 10 molecules of CO_{2} so per molecule of CO_{2} transfer of e^{-}is ' 1 '
$5.1 \mathrm{~g} \mathrm{NH}_{4} \mathrm{SH}$ is introduced in 3.0 L evacuated flask at $327^{\circ} \mathrm{C} .30 \%$ of the solid $\mathrm{NH}_{4} \mathrm{SH}$ decomposed to NH_{3} and $\mathrm{H}_{2} \mathrm{~S}$ as gases. The K_{p} of the reaction at $327^{\circ} \mathrm{C}$ is $(\mathrm{R}=0.082 \mathrm{~L}$ atm $\mathrm{mol}^{-1} \mathrm{~K}^{-1}$, Molar mass of $\mathrm{S}=32 \mathrm{~g} \mathrm{~mol}^{/ 01}$, molar mass of $\mathrm{N}=14 \mathrm{~g} \mathrm{~mol}^{-1}$)
(1) $1 \times 10^{-4} \mathrm{~atm}^{2}$
(2) $4.9 \times 10^{-3} \mathrm{~atm}^{2}$
(3) $0.242 \mathrm{~atm}^{2}$
(4) $0.242 \times 10^{-4} \mathrm{~atm}^{2}$

Ans. (3)
$\mathrm{NH}_{4} \mathrm{SH}(\mathrm{s}) \rightleftharpoons \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$
Sol. $\mathrm{n}=\frac{5.1}{51}=.1$ mole $0 \quad 0$
$.1(-1-\alpha) \quad .1 \alpha \quad .1 \alpha$
$\alpha=30 \%=.3$
so number of moles at equilibrium

$=$| $.1(1-.3)$ | $.1 \times .3$ | $.1 \times .3$ |
| :--- | :--- | :--- |
| .07 | $=.03$ | $=.03$ |

Now use $\mathrm{PV}=\mathrm{nRT}$ at equilibrium
$\mathrm{P}_{\text {total }} \times 3$ lit $=(.03+.03) \times .082 \times 600$
$\mathrm{P}_{\text {total }}=.984 \mathrm{~atm}$
At equilibrium
$\mathrm{P}_{\mathrm{NH}_{3}}=\mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=\frac{\mathrm{P}_{\text {total }}}{2}=.492$
So $\mathrm{k}_{\mathrm{p}}=\mathrm{P}_{\mathrm{NH}_{3}} \cdot \mathrm{P}_{\mathrm{H}_{2} \mathrm{~S}}=(.492)$ (.492)

$$
\mathrm{k}_{\mathrm{p}}=.242 \mathrm{~atm}^{2}
$$

25. The electrolytes usually used in the electroplating of gold and silver, respectively, are :
(1) $\left[\mathrm{Au}(\mathrm{OH})_{4}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{OH})_{2}\right]^{-}$
(2) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $[\mathrm{Ag} \mathrm{CI} 2]^{-}$
(3) $\left[\mathrm{Au}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$and $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$
(4) $\left[\mathrm{Au}(\mathrm{CN})_{2}\right]^{-}$and $\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]^{-}$

Ans. (4)
26. Elevation in the boiling point for 1 molal solution of glucose is 2 K . The depression in the freezing point of 2 molal solutions of glucose in the same solvent is 2 K . The relation between K_{b} and K_{f} is:
(1) $\mathrm{K}_{\mathrm{b}}=0.5 \mathrm{~K}_{\mathrm{f}}$
(2) $\mathrm{K}_{\mathrm{b}}=2 \mathrm{~K}_{\mathrm{f}}$
(3) $\mathrm{K}_{\mathrm{b}}=1.5 \mathrm{~K}_{\mathrm{f}}$
(4) $K_{b}=K_{f}$

Ans. (2)
Sol. Ans.(2)
$\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\Delta \mathrm{T}_{\mathrm{f}}}=\frac{\mathrm{i} . \mathrm{m} \times \mathrm{k}_{\mathrm{b}}}{\mathrm{i} \times \mathrm{m} \times \mathrm{k}_{\mathrm{f}}}$
$\frac{2}{2}=\frac{1 \times 1 \times \mathrm{k}_{\mathrm{b}}}{1 \times 2 \times \mathrm{k}_{\mathrm{f}}}$
$\mathrm{k}_{\mathrm{b}}=2 \mathrm{k}_{\mathrm{f}}$
27. An aromatic compound ' A ' having molecular formula $\mathrm{C}_{7} \mathrm{H}_{6} \mathrm{O}_{2}$ on treating with aqueous ammonia and heating forms compound ' B '. The compound ' B ' on reaction with molecular bromine and potassium hydroxide proyides compound ' C ' having molecular formula $\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}$. The structure of ' A ' is :
(1)

(3)

(4)

Ans. (3)
Sol.

TEST PAPER OF JEE(MAIN) EXAMINATION - 2019
 (Held On Thursday 10 th JANUARY, 2019) TIME : 2:30 PM To 5:30 PM MATHEMATICS

1. Let $\mathrm{z}=\left(\frac{\sqrt{3}}{2}+\frac{\mathrm{i}}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{\mathrm{i}}{2}\right)^{5}$. If $\mathrm{R}(\mathrm{z})$ and $\mathrm{I}[\mathrm{z}]$ respectively denote the real and imaginary parts of z , then :
(1) $\mathrm{R}(\mathrm{z})>0$ and $\mathrm{I}(\mathrm{z})>0$
(2) $\mathrm{R}(\mathrm{z})<0$ and $\mathrm{I}(\mathrm{z})>0$
(3) $R(z)=-3$
(4) $I(z)=0$

Ans. (4)
Sol. $\mathrm{z}=\left(\frac{\sqrt{3}+\mathrm{i}}{2}\right)^{5}+\left(\frac{\sqrt{3}-\mathrm{i}}{2}\right)^{5}$

$$
\begin{aligned}
z & =\left(e^{\mathrm{i} \pi / 6}\right)^{5}+\left(\mathrm{e}^{-\mathrm{i} \pi / 6}\right)^{5} \\
& =\mathrm{e}^{\mathrm{i} 5 \pi / 6}+\mathrm{e}^{-\mathrm{i} 5 \pi / 6}
\end{aligned}
$$

$$
=\cos \frac{5 \pi}{6}+\mathrm{i} \frac{\sin 5 \pi}{6}+\cos \left(\frac{-5 \pi}{6}\right)+\mathrm{i} \sin \left(\frac{-5 \pi}{6}\right)
$$

$$
=2 \cos \frac{5 \pi}{6}<0
$$

$\mathrm{I}(\mathrm{z})=0$ and $\operatorname{Re}(\mathrm{z})<0$
Option (4)
2. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{10}$ be in G.P. with $a_{i}>0$ for $\mathrm{i}=1,2, \ldots ., 10$ and S be the set of pairs (r, k), $r k \in N$ (the set of natural numbers) for which

Then the number of elements in S , is :
(1) Infinitely many
(2) 4
(3) 10
(4) 2

Ans. (1)
Sol. Apply

$$
\begin{aligned}
& \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C}_{2} \\
& \mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}
\end{aligned}
$$

We get $\mathrm{D}=0$
Option (1)
3. The positive value of λ for which the co-efficient of x^{2} in the expression $\mathrm{x}^{2}\left(\sqrt{\mathrm{x}}+\frac{\lambda}{\mathrm{x}^{2}}\right)^{10}$ is 720 , is :
(1) $\sqrt{5}$
(2) 4
(3) $2 \sqrt{2}$
(4) 3

Ans. (2)

Sol.
$x^{2}\left({ }^{10} C_{r}(\sqrt{x})^{10-r}\left(\frac{\lambda}{x^{2}}\right)\right)$

$\mathrm{x}^{2}\left[{ }^{10} \mathrm{C}_{\mathrm{r}} \lambda^{\mathrm{r}} \mathrm{x}^{\frac{10-5 \mathrm{r}}{2}}\right]$
$\therefore \mathrm{r}=2$
Hence, ${ }^{10} \mathrm{C}_{2} \lambda^{2}=720$
$\lambda^{2}=16$
$\lambda= \pm 4$
Option (2)
4. The value of $\cos \frac{\pi}{2^{2}} \cdot \cos \frac{\pi}{2^{3}} \cdot \ldots . . \cdot \cos \frac{\pi}{2^{10}} \cdot \sin \frac{\pi}{2^{10}}$ is :
(1) $\frac{1}{256}$
(2) $\frac{1}{2}$
(3) $\frac{1}{512}$
(4) $\frac{1}{1024}$

Ans. (3)
Sol. $2 \sin \frac{\pi}{2^{10}} \cos \frac{\pi}{2^{10}} \ldots \ldots \cos \frac{\pi}{2^{2}}$
$\frac{1}{2^{9}} \sin \frac{\pi}{2}=\frac{1}{512}$
Option (3)
5. The value of $\int_{-\pi / 2}^{\pi / 2} \frac{d x}{[x]+[\sin x]+4}$, where $[t]$ denotes the greatest integer less than or equal to t, is :
(1) $\frac{1}{12}(7 \pi+5)$
(2) $\frac{3}{10}(4 \pi-3)$
(3) $\frac{1}{12}(7 \pi-5)$
(4) $\frac{3}{20}(4 \pi-3)$

Ans. (4)

Sol. $I=\int_{\frac{-\pi}{2}}^{\frac{\pi}{2}} \frac{d x}{[x]+[\sin x]+4}$

$$
\begin{aligned}
& \begin{array}{l}
\int_{\frac{-\pi}{2}}^{-1} \frac{\mathrm{dx}}{-2-1+4}+\int_{-1}^{0} \frac{\mathrm{dx}}{-1-1+4} \\
+\int_{0}^{1} \frac{\mathrm{dx}}{0+0+4}+\int_{1}^{\frac{\pi}{2}} \frac{\mathrm{dx}}{1+0+4} \\
\begin{array}{l}
\frac{-\pi}{2} \\
\hline-1 \\
1
\end{array} \int_{-1}^{0} \frac{\mathrm{dx}}{2}+\int_{0}^{1} \frac{\mathrm{dx}}{4}+\int_{1}^{\frac{\pi}{2}} \frac{\mathrm{dx}}{5} \\
\left(-1+\frac{\pi}{2}\right)^{2}+\frac{1}{2}(0+1)+\frac{1}{4}+\frac{1}{5}\left(\frac{\pi}{2}-1\right) \\
-1+\frac{1}{2}+\frac{1}{4}-\frac{1}{5}+\frac{\pi}{2}+\frac{\pi}{10}
\end{array}
\end{aligned}
$$

$$
\frac{-20+10+5-4}{20}+\frac{6 \pi}{10}
$$

$$
\frac{-9}{20}+\frac{3 \pi}{5}
$$

Option (4)
6. If the probability of hitting a target by a shooter, in any shot, is $1 / 3$, then the minimum number of independent shots at the target required by him so that the probability of hitting the target at least once is greater than $\frac{5}{6}$, is :
(1) 6
(2) 5
(3) 4
(4) 3

Ans. (2)
Sol. $\quad 1-{ }^{\mathrm{n}} \mathrm{C}_{0}\left(\frac{1}{3}\right)^{0}\left(\frac{2}{3}\right)^{\mathrm{n}}>\frac{5}{6}$
$\frac{1}{6}>\left(\frac{2}{3}\right)^{n} \Rightarrow 0.1666>\left(\frac{2}{3}\right)^{n}$
$\mathrm{n}_{\text {min }}=5 \Leftrightarrow$ Option (2)
7. If mean and standard deviation of 5 observations $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}$ are 10 and 3 , respectively, then the variance of 6 observations $x_{1}, x_{2}, \ldots, x_{5}$ and -50 is equal to :
(1) 582.5
(2) 507.5
(3) 586.5
(4) 509.5

Ans. (2)
Sol. $\bar{x}=10 \Rightarrow \sum_{i=1}^{5} x_{i}=50$
S.D. $=\sqrt{\frac{\sum_{i=1}^{5} x_{i}^{2}}{5}-(\bar{x})^{2}}=8$
$\Rightarrow \sum_{\mathrm{i}=1}^{5}\left(\mathrm{x}_{\mathrm{i}}\right)^{2}=109$
variance $=\frac{\sum_{i=1}^{5}\left(x_{i}\right)^{2}+(-50)^{2}}{6}-\left(\sum_{i=1}^{5} \frac{x_{i}-50}{6}\right)$

$$
=507.5
$$

Option (2)
8. The length of the chord of the parabola $x^{2}=4 y$ having equation $x-\sqrt{2} y+4 \sqrt{2}=0$ is :
(1) $2 \sqrt{11}$
(2) $3 \sqrt{2}$
(3) $6 \sqrt{3}$
(4) $8 \sqrt{2}$

Ans. (3)

Sol. $x^{2}=4 y$
$x-\sqrt{2} y+4 \sqrt{2}=0$
Solving together we get
$x^{2}=4\left(\frac{x+4 \sqrt{2}}{\sqrt{2}}\right)$
$\sqrt{2} x^{2}+4 x+16 \sqrt{2}$
$\sqrt{2} x^{2}-4 x-16 \sqrt{2}=0$
$\mathrm{x}_{1}+\mathrm{x}_{2}=2 \sqrt{2} ; \quad \mathrm{x}_{1} \mathrm{x}_{2}=\frac{-16 \sqrt{2}}{\sqrt{2}}=-16$
Similarly,
$(\sqrt{2} y-4 \sqrt{2})^{2}=4 y$
$2 y^{2}+32-16 y=4 y$
$2 y^{2}-20 y+32=0 \longrightarrow y_{1}+y_{2}=10$
$\frac{\text { A }}{\text { A }}$
$\ell_{\mathrm{AB}}=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$

$$
\begin{aligned}
& =\sqrt{(2 \sqrt{2})^{2}+64+(10)^{2}-4(16)} \\
& =\sqrt{8+64+100-64} \\
& =\sqrt{108}=6 \sqrt{3}
\end{aligned}
$$

Option (3)
9. Let $A=\left[\begin{array}{ccc}2 & b & 1 \\ b & b^{2}+1 & b \\ 1 & b & 2\end{array}\right]$ where $b>0$. Then the minimum value of $\frac{\operatorname{det}(\mathrm{A})}{b}$ is :
(1) $\sqrt{3}$
(2) $-\sqrt{3}$
(3) $-2 \sqrt{3}$
(4) $2 \sqrt{3}$

Ans. (4)

Sol. $\mathrm{A}=\left[\begin{array}{ccc}2 & \mathrm{~b} & 1 \\ \mathrm{~b} & \mathrm{~b}^{2}+1 & \mathrm{~b} \\ 1 & \mathrm{~b} & 2\end{array}\right](\mathrm{b}>0)$
$|A|=2\left(2 b^{2}+2-b^{2}\right)-b(2 b-b)+1\left(b^{2}-b^{2}-1\right)$
$|\mathrm{A}|=2\left(\mathrm{~b}^{2}+2\right)-\mathrm{b}^{2}-1$
$|A|=b^{2}+3$
$\frac{|\mathrm{A}|}{\mathrm{b}}=\mathrm{b}+\frac{3}{\mathrm{~b}} \Rightarrow \frac{\mathrm{~b}+\frac{3}{\mathrm{~b}}}{2} \geq \sqrt{3}$
$b+\frac{3}{b} \geq 2 \sqrt{3}$
Option (4)
10. The tangent to the curve, $y=x e^{x^{2}}$ passing through the point $(1, e)$ also passes through the point :
(2) $(2,3 \mathrm{e})$
(3) $\left(\frac{5}{3}, 2 \mathrm{e}\right)$
(4) $(3,6 e)$

Ans. (1)
Sol. $y=x e^{x^{2}}$
$\left.\frac{d y}{d x}\right|_{(1, e)}=\left.\left(e \cdot e^{x^{2}} \cdot 2 x+e^{x^{2}}\right)\right|_{(1, e)}=2 \cdot e+e=3 e$
$T: y-e=3 e(x-1)$

$$
\begin{aligned}
& \mathrm{y}=3 \mathrm{ex}-3 \mathrm{e}+\mathrm{e} \\
& \mathrm{y}=(3 \mathrm{e}) \mathrm{x}-2 \mathrm{e} \\
& \left(\frac{4}{3}, 2 \mathrm{e}\right) \text { lies on it }
\end{aligned}
$$

Option (1)
11. The number of values of $\theta \in(0, \pi)$ for which the system of linear equations
$x+3 y+7 z=0$
$-x+4 y+7 z=0$
$(\sin 3 \theta) x+(\cos 2 \theta) y+2 z=0$
has a non-trivial solution, is :
(1) One
(2) Three
(3) Four
(4) Two

Ans. (4)

Sol. $\left|\begin{array}{ccc}1 & 3 & 7 \\ -1 & 4 & 7 \\ \sin 3 \theta & \cos 2 \theta & 2\end{array}\right|=0$
$(8-7 \cos 2 \theta)-3(-2-7 \sin 3 \theta)$ $+7(-\cos 2 \theta-4 \sin 3 \theta)=0$
$14-7 \cos 2 \theta+21 \sin 3 \theta-7 \cos 2 \theta$

$$
-28 \sin 3 \theta=0
$$

$14-7 \sin 3 \theta-14 \cos 2 \theta=0$
$14-7\left(3 \sin \theta-4 \sin ^{3} \theta\right)-14\left(1-2 \sin ^{2} \theta\right)=0$
$-21 \sin \theta+28 \sin ^{3} \theta+28 \sin ^{2} \theta=0$
$7 \sin \theta\left[-3+4 \sin ^{2} \theta+4 \sin \theta\right]=0$
$\sin \theta$,
$4 \sin ^{2} \theta+6 \sin \theta-2 \sin \theta-3=0$
$2 \sin \theta(2 \sin \theta+3)-1(2 \sin \theta+3)=0$
$\sin \theta=\frac{-3}{2} ; \sin \theta=\frac{1}{2}$
Hence, 2 solutions in $(0, \pi)$
Option (4)
12. If $\int_{0}^{x} f(t) d t=x^{2}+\int_{x}^{1} t^{2} f(t) d t$, then $f^{\prime}(1 / 2)$ is :
(1) $\frac{6}{25}$
(2) $\frac{24}{25}$
(3) $\frac{18}{25}$
(4) $\frac{4}{5}$

Ans. (2)
Sol. $\int_{0}^{x} f(t) d t=x^{2}+\int_{x}^{1} t^{2} f(t) d t \quad f^{\prime}\left(\frac{1}{2}\right)=$?
Differentiate w.r.1. x^{\prime}
$f(x)=2 x+0-x^{2} f(x)$
$\mathrm{f}(\mathrm{x})=\frac{2 \mathrm{x}}{1+\mathrm{x}^{2}} \Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=\frac{\left(1+\mathrm{x}^{2}\right) 2-2 \mathrm{x}(2 \mathrm{x})}{\left(1+\mathrm{x}^{2}\right)^{2}}$
$f^{\prime}(x)=\frac{2 x^{2}-4 x^{2}+2}{\left(1+x^{2}\right)^{2}}$
$f^{\prime}\left(\frac{1}{2}\right)=\frac{2-2\left(\frac{1}{4}\right)}{\left(1+\frac{1}{4}\right)^{2}}=\frac{\left(\frac{3}{2}\right)}{\frac{25}{16}}=\frac{48}{50}=\frac{24}{25}$

Option (2)

13. Let $\mathrm{f}:(-1,1) \rightarrow \mathrm{R}$ be a function defined by $f(x)=\max \left\{-|x|,-\sqrt{1-x^{2}}\right\}$. If K be the set of all points at which f is not differentiable, then K has exactly :
(1) Three elements
(2) One element
(3) Five elements
(4) Two elements

Ans. (1)
Sol. $\mathrm{f}:(-1,1) \rightarrow \mathrm{R}$

Non-derivable at 3 points in $(-1,1)$
Option (1)
14. Let $\mathrm{S}=\left\{(\mathrm{x}, \mathrm{y}) \in \mathrm{R}^{2}: \frac{\mathrm{y}^{2}}{1+\mathrm{r}}-\frac{\mathrm{x}^{2}}{1-\mathrm{r}}=1\right\}$, where $\mathrm{r} \neq \pm 1$. Then S represents :
(1) A hyperbola whose eccentricity is $\frac{2}{\sqrt{\mathrm{r}+1}}$, where $0<r<1$.
(2) An ellipse whose eccentricity is $\frac{1}{\sqrt{\mathrm{r}+1}}$, where $\mathrm{r}>1$
(3) A hyperbola whose eccentricity is $\frac{2}{\sqrt{1-r}}$, when $0<r<1$.
(4) An ellipse whose eccentricity is $\sqrt{\frac{2}{\mathrm{r}+1}}$, when $\mathrm{r}>1$

Ans. (4)

Sol. $\frac{y^{2}}{1+r}-\frac{x^{2}}{1-r}=1$
for $\mathrm{r}>1, \quad \frac{\mathrm{y}^{2}}{1+\mathrm{r}}+\frac{\mathrm{x}^{2}}{\mathrm{r}-1}=1$
$e=\sqrt{1-\left(\frac{r-1}{r+1}\right)}$
$=\sqrt{\frac{(r+1)-(r-1)}{(r+1)}}$
$=\sqrt{\frac{2}{r+1}}=\sqrt{\frac{2}{r+1}}$
Option (4)
15. If $\sum_{\mathrm{r}=0}^{25}\left\{{ }^{50} \mathrm{C}_{\mathrm{r}} \cdot{ }^{50-\mathrm{r}} \mathrm{C}_{25-\mathrm{r}}\right\}=\mathrm{K}\left({ }^{50} \mathrm{C}_{25}\right)$, then K is equal to :
(1) $2^{25}-1$
(2) $(25)^{2}$
(3) 2^{25}
(4) 2^{24}

Ans. (3)
Sol. $\sum_{\mathrm{r}=0}^{25}{ }^{50} \mathrm{C}_{\mathrm{r}} \cdot{ }^{50-\mathrm{r}} \mathrm{C}_{25-\mathrm{r}}$
$=\sum_{r=0}^{25} \frac{50!}{r!(50-r)!} \times \frac{(50-r)!}{(25)!(25-r)!}$
$=\sum_{\mathrm{r}=0}^{25} \frac{50!}{25!25!} \times \frac{25!}{(25-\mathrm{r})!(\mathrm{r}!)}$
$={ }^{50} \mathrm{C}_{25} \sum_{\mathrm{r}=0}^{25}{ }^{25} \mathrm{C}_{\mathrm{r}}=\left(2^{25}\right){ }^{50} \mathrm{C}_{25}$
$\therefore \mathrm{K}=\mathbf{2}^{25}$
Option (3)
16. Let N be the set of natural numbers and two functions f and g be defined as $f, g: N \rightarrow N$
such that : $f(n)=\left(\begin{array}{ll}\frac{n+1}{2} & \text { if } n \text { is odd } \\ \frac{n}{2} & \text { if } n \text { is even }\end{array}\right.$
and $g(n)=n-(-1)^{n}$. The fog is :
(1) Both one-one and onto
(2) One-one but not onto
(3) Neither one-one nor onto
(4) onto but not one-one

Ans. (4)

Sol. $f(x)= \begin{cases}\frac{n+1}{2} & n \text { is odd } \\ n / 2 & n \text { is even }\end{cases}$
$\mathrm{g}(\mathrm{x})=\mathrm{n}-(-1)^{\mathrm{n}}\left\{\begin{array}{l}\mathrm{n}+1 ; \mathrm{n} \text { is odd } \\ \mathrm{n}-1 ; \mathrm{n} \text { is even }\end{array}\right.$
$f(g(n))= \begin{cases}\frac{n}{2} ; & n \text { is even } \\ \frac{n+1}{2} ; & n \text { is odd }\end{cases}$

\therefore many one but onto

Option (4)

17. The values of λ such that sum of the squares of the roots of the quadratic equation,
$\lambda) x+2=\lambda$ has the least value is :
(1) 2
(2) $\frac{4}{9}$
(3) $\frac{15}{8}$
(4) 1

Ans. (1)
Sol. $\alpha+\beta=\lambda-3$
$\alpha \beta=2-\lambda$
$\alpha^{2}+\beta^{2}=(\alpha+\beta)^{2}-2 \alpha \beta=(\lambda-3)^{2}-2(2-\lambda)$

$$
=\lambda^{2}+9-6 \lambda-4+2 \lambda
$$

$$
=\lambda^{2}-4 \lambda+5
$$

$$
=(\lambda-2)^{2}+1
$$

$\therefore \lambda=2$
Option (1)
18. Two vertices of a triangle are $(0,2)$ and $(4,3)$. If its orthocentre is at the origin, then its third vertex lies in which quadrant?
(1) Fourth
(2) Second
(3) Third
(4) First

Ans. (2)

Sol. $\quad \mathrm{m}_{\mathrm{BD}} \times \mathrm{m}_{\mathrm{AD}}=-1 \Rightarrow\left(\frac{3-2}{4-0}\right) \times\left(\frac{\mathrm{b}-0}{\mathrm{a}-0}\right)=-1$
$\Rightarrow \mathrm{b}+4 \mathrm{a}=0$

$\mathrm{m}_{\mathrm{AB}} \times \mathrm{m}_{\mathrm{CF}}=-1 \Rightarrow\left(\frac{(\mathrm{~b}-2)}{\mathrm{a}-0}\right) \times\left(\frac{3}{4}\right)=-1$
$\Rightarrow 3 \mathrm{~b}-6=-4 \mathrm{a} \Rightarrow 4 \mathrm{a}+3 \mathrm{~b}=6$
From (i) and (ii)

$$
\mathrm{a}=\frac{-3}{4}, \mathrm{~b}=3
$$

$\therefore \quad \mathrm{II}^{\text {nd }}$ quadrant.
Option (2)
19. Two sides of a parallelogram are along the lines, $x+y=3$ and $x-y+3=0$. If its diagonals intersect at $(2,4)$, then one of its vertex is
(1) $(2,6)$
(2) $(2,1)$
(3) $(3,5)$
(4) $(3,6)$

Ans. (4)

Sol.

Solving $\quad x+y=3$

$$
\begin{aligned}
& \mathrm{A}(0,3) \\
& \mathrm{x}-\mathrm{y}=-3
\end{aligned}
$$

$\frac{x_{1}+0}{2}=2 ; \quad x_{i}=4 \quad$ similarly $\quad y_{1}=5$
$C \Rightarrow(4,5)$
Now equation of $B C$ is $x-y=-1$ and equation of $C D$ is $x+y=9$
Solving $x+y=9$ and $x-y=-3$
Point D is $(3,6)$
Option (4)
20. Let $\vec{\alpha}=(\lambda-2) \vec{a}+\vec{b}$ and $\vec{\beta}=(4 \lambda-2) \vec{a}+3 \vec{b} \quad$ be two given vectors where vectors \vec{a} and \vec{b} are non-collinear. The value of λ for which vectors $\vec{\alpha}$ and $\vec{\beta}$ are collinear, is :
(1) -3
(2) 4
(3) 3
(4) -4

Ans. (4)
Sol. $\vec{\alpha}=(\lambda-2) \vec{\alpha}+\vec{b}$
$\vec{\beta}=(4 \lambda-2) \vec{\alpha}+3 \vec{b}$
$\frac{\lambda-2}{4 \lambda-2}=\frac{1}{3}$
$3 \lambda-6=4 \lambda-2$
$\lambda=-4$
\therefore Option (4)
21. The value of $\cot \left(\sum_{n=1}^{19} \cot ^{-1}\left(1+\sum_{p=1}^{n} 2 p\right)\right)$ is :
(1) $\frac{22}{23}$
(2) $\frac{23}{22}$
(3) $\frac{21}{19}$
(4) $\frac{19}{21}$

Ans. (3)
Sol. $\quad \cot \left(\sum_{n=1}^{19} \cot ^{-1}(1+n(n+1))\right.$

$$
\begin{aligned}
& \cot \left(\sum_{\mathrm{n}=1}^{19} \cot ^{-1}\left(\mathrm{n}^{2}+\mathrm{n}+1\right)\right)=\cot \left(\sum_{\mathrm{n}=1}^{19} \tan ^{-1} \frac{1}{1+\mathrm{n}(\mathrm{n}+1)}\right) \\
& \sum_{\mathrm{n}=1}^{19}\left(\tan ^{-1}(\mathrm{n}+1)-\tan ^{-1} \mathrm{n}\right)
\end{aligned}
$$

$\cot \left(\tan ^{-1} 20-\tan ^{-1} 1\right)=\frac{\cot A \cot \beta+1}{\cot \beta-\cot A}$

$$
\frac{1\left(\frac{1}{20}\right)+1}{1-\frac{1}{20}}=\frac{21}{19}
$$

\therefore Option (3)
22. With the usual notation, in $\triangle \mathrm{ABC}$, if $\angle \mathrm{A}+\angle \mathrm{B}=120^{\circ}, \mathrm{a}=\sqrt{3}+1$ and $\mathrm{b}=\sqrt{3}-1$, then the ratio $\angle \mathrm{A}: \angle \mathrm{B}$, is :
(1) $7: 1$
(2) $5: 3$
(3) $9: 7$
(4) $3: 1$

Ans. (1)
Sol. $\mathrm{A}+\mathrm{B}=120^{\circ}$

$$
\begin{aligned}
& \tan \frac{\mathrm{A}-\mathrm{B}}{2}=\frac{\mathrm{a}-\mathrm{b}}{\mathrm{a}+\mathrm{b}} \cot \left(\frac{\mathrm{C}}{2}\right) \\
& =\frac{\sqrt{3}+1-\sqrt{3}+1}{2(\sqrt{3})} \cot \left(30^{\circ}\right)=\frac{1}{\sqrt{3}} \cdot \sqrt{3}=1 \\
& \Rightarrow \begin{array}{l}
\mathrm{A}-\mathrm{B}=90^{\circ} \\
\mathrm{A}+\mathrm{B}=120^{\circ} \\
-\mathrm{B} \\
2
\end{array} \\
& \begin{aligned}
2 \mathrm{~A} & =210^{\circ} \\
\mathrm{A} & =105^{\circ} \\
\mathrm{B} & =15^{\circ}
\end{aligned}
\end{aligned}
$$

\therefore Option (1)
23. The plane which bisects the line segment joining the points $(-3,-3,4)$ and $(3,7,6)$ at right angles, passes through which one of the following points ?
(1) $(4,-1,7)$
(2) $(4,1,-2)$
(3) $(-2,3,5)$
(4) $(2,1,3)$

Ans. (2)

Sol.

$\mathrm{p}: 3(\mathrm{x}-0)+5(\mathrm{y}-2)+1(\mathrm{z}-5)=0$
$3 x+5 y+z=15$
\therefore Option (2)
24. Consider the following three statements:
$\mathrm{P}: 5$ is a prime number.
Q : 7 is a factor of 192.
R : L.C.M. of 5 and 7 is 35.
Then the truth value of which one of the following statements is true ?
(1) $\left(\mathrm{P}^{\wedge} \mathrm{Q}\right) \vee(\sim \mathrm{R})$
(2) $(\sim P) \wedge\left(\sim Q^{\wedge} R\right)$
(3) $(\sim \mathrm{P}) \vee\left(\mathrm{Q}^{\wedge} \mathrm{R}\right)$
(4) $\mathrm{P} \vee\left(\sim \mathrm{Q}^{\wedge} \mathrm{R}\right)$

Ans. (4)
Sol. It is obvious
\therefore Option (4)
25. On which of the following lines lies the point of intersection of the line, $\frac{x-4}{2}=\frac{y-5}{2}=\frac{z-3}{1}$
and the plane, $\mathrm{x}+\mathrm{y}+\mathrm{z}=2$?
(1) $\frac{x-2}{2}=\frac{y-3}{2}=\frac{z+3}{3}$
(2) $\frac{x-4}{1}=\frac{y-5}{1}=\frac{z-5}{-1}$
(3) $\frac{x-1}{1}=\frac{y-3}{2}=\frac{z+4}{-5}$
(4) $\frac{x+3}{3}=\frac{4-y}{3}=\frac{z+1}{-2}$

Ans. (3)
Sol. General point on the given line is
$\mathrm{x}=2 \lambda+4$
$y=2 \lambda+5$
$\mathrm{z}=\lambda+3$
Solving with plane,
$2 \lambda+4+2 \lambda+5+\lambda+3=2$
$5 \lambda+12=2$
$5 \lambda=-10$
$\lambda=-2$
\therefore Option (3)
26. Let f be a differentiable function such that $\mathrm{f}^{\prime}(\mathrm{x})=7-\frac{3}{4} \frac{\mathrm{f}(\mathrm{x})}{\mathrm{x}},(\mathrm{x}>0)$ and $\mathrm{f}(1) \neq 4$.

Then $\lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)$:
(1) Exists and equals 4
(2) Does not exist
(3) Exist and equals 0
(4) Exists and equals $\frac{4}{7}$

Ans. (1)

Sol. $f^{\prime}(x)=7-\frac{3}{4} \frac{f(x)}{x} \quad(x>0)$

Given $f(1) \neq 4 \quad \lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)=$?
$\frac{d y}{d x}+\frac{3}{4} \frac{y}{x}=7$ (This is LDE)
$I F=e^{\int \frac{3}{4 x} \mathrm{dx}}=\mathrm{e}^{\frac{3}{4} \ln |\mathrm{x}|}=\mathrm{x}^{\frac{3}{4}}$
$y \cdot x^{\frac{3}{4}}=\int 7 \cdot x^{\frac{3}{4}} d x$
$y \cdot x^{\frac{3}{4}}=7 \cdot \frac{x^{\frac{7}{4}}}{\frac{7}{4}}+C$
$f(x)=4 x+C \cdot x^{-\frac{3}{4}}$
$f\left(\frac{1}{x}\right)=\frac{4}{x}+C \cdot x^{\frac{3}{4}}$
$\lim _{x \rightarrow 0^{+}} x f\left(\frac{1}{x}\right)=\lim _{x \rightarrow 0^{+}}\left(4+C \cdot x^{\frac{7}{4}}\right)=4$
\therefore Option (1)
27. A helicopter is flying along the curve given by $y-x^{3 / 2}=7,(x \geq 0)$. A soldier positioned at the point $\left(\frac{1}{2}, 7\right)$ wants to shoot down the helicopter when it is nearest to him. Then this nearest distance is :
(1) $\frac{1}{2}$
(2) $\frac{1}{3} \sqrt{\frac{7}{3}}$
(3) $\frac{1}{6} \sqrt{\frac{7}{3}}$
(4) $\frac{\sqrt{5}}{6}$

Ans. (3)
Sol. $y-x^{3 / 2}=7(x \geq 0)$
$\frac{d y}{d x}=\frac{3}{2} x^{1 / 2}$

$\left(\frac{3}{2} \sqrt{x}\right)\left(\frac{-x^{3 / 2}}{\frac{1}{2}-x}\right)=-1$
$\frac{3}{2} \cdot x^{2}=\frac{1}{2}-x$
$3 \mathrm{x}^{2}=1-2 \mathrm{x}$
$3 x^{2}+2 x-1=0$
$3 x^{2}+3 x-x-1=0$
$(x+1)(3 x-1)=0$
$\therefore \quad \mathrm{x}=-1$ (rejected)
$\mathrm{x}=\frac{1}{3}$
$y=7+x^{3 / 2}=7+\left(\frac{1}{3}\right)^{3 / 2}$
$\ell_{\mathrm{AB}}=\sqrt{\left(\frac{1}{2}-\frac{1}{3}\right)^{2}+\left(\frac{1}{3}\right)^{3}}=\sqrt{\frac{1}{36}+\frac{1}{27}}$
$=\sqrt{\frac{3+4}{9 \times 12}}$
$=\sqrt{\frac{7}{108}}=\frac{1}{6} \sqrt{\frac{7}{3}}$
Option (3)
28. If $\int x^{5} e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+C$, where C is a constant of integration, then $f(x)$ is equal to :
(1) $-4 x^{3}-1$
(2) $4 x^{3}+1$
(3) $-2 x^{3}-1$
(4) $-2 x^{3}+1$

Ans. (1)

Sol. $\int x^{5} \cdot e^{-4 x^{3}} d x=\frac{1}{48} e^{-4 x^{3}} f(x)+c$
Put $x^{3}=t$

$$
3 \mathrm{x}^{2} \mathrm{dx}=\mathrm{dt}
$$

$$
\int x^{3} \cdot e^{-4 x^{3}} \cdot x^{2} d x
$$

$\frac{1}{3} \int t \cdot e^{-4 t} d t$
$\frac{1}{3}\left[\mathrm{t} \cdot \frac{\mathrm{e}^{-4 \mathrm{t}}}{-4}-\int \frac{\mathrm{e}^{-4 \mathrm{t}}}{-4} \mathrm{dt}\right]$

$$
-\frac{\mathrm{e}^{-4 \mathrm{t}}}{48}[4 \mathrm{t}+1]+\mathrm{c}
$$

$$
\frac{-\mathrm{e}^{-4 x^{3}}}{48}[4 x+1]+c
$$

$\therefore \mathrm{f}(\mathrm{x})=-1-4 \mathrm{x}^{3}$
Option (1)
(From the given options (1) is most suitable)
29. The curve amongst the family of curves, represented by the differential equation, $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$ which passes through $(1,1)$ is :
(1) A circle with centre on the y-axis
(2) A circle with centre on the x-axis
(3) An ellipse with major axis along the y-axis
(4) A hyperbola with transverse axis along the x -axis

Ans. (2)
Sol. $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$

Put $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$

Solving we get,
$\int \frac{2 v}{v^{2}+1} d v=\int-\frac{d x}{x}$
$\ln \left(v^{2}+1\right)=-\ln x+C$
$\left(y^{2}+x^{2}\right)=C x$
$1+1=\mathrm{C} \Rightarrow \mathrm{C}=2$
$y^{2}+x^{2}=2 x$
\therefore Option (2)
30. If the area of an equilateral triangle inscribed in the circle, $x^{2}+y^{2}+10 x+12 y+c=0$ is $27 \sqrt{3}$ sq. units then c is equal to :
(1) 20
(2) 25
(3) 13
(4) -25

Ans. (2)

Sol. $3\left(\frac{1}{2} r^{2} \cdot \sin 120^{\circ}\right)=27 \sqrt{3}$
$\frac{\mathrm{r}^{2}}{2} \frac{\sqrt{3}}{2}=\frac{27 \sqrt{3}}{3}$
$r^{2}=\frac{108}{3}=36$
Radius $=\sqrt{25+36-\mathrm{C}}=\sqrt{36}$
$\mathrm{C}=25$
\therefore Option (2)

